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Exercise 1.1.11

Determine whether each of these series is convergent, and if so, whether it is absolutely
convergent:

(a)
ln 2

2
− ln 3

3
+

ln 4

4
− ln 5

5
+

ln 6

6
− · · · ,

(b)
1

1
+

1

2
− 1

3
− 1

4
+

1

5
+

1

6
− 1

7
− 1

8
+ · · · ,

(c) 1− 1

2
− 1

3
+

1

4
+

1

5
+

1

6
− 1

7
− 1

8
− 1

9
− 1

10
+

1

11
· · ·+ 1

15
− 1

16
· · · − 1

21
+ · · · .

Solution

Part (a)

Rewrite the given series.

ln 2

2
− ln 3

3
+

ln 4

4
− ln 5

5
+

ln 6

6
− · · · =

∞∑
n=2

(−1)n
lnn

n

To determine whether this alternating series converges, check the two conditions of the Leibniz
criterion.

(i)
d

dn

(
lnn

n

)
=

1− lnn

n2
< 0 if n > e

(ii) lim
n→∞

lnn

n

∞
∞=
H

lim
n→∞

d
dn(lnn)

d
dn(n)

= lim
n→∞

1
n

1
= lim

n→∞

1

n
= 0

Since the first derivative of lnn/n is negative (for sufficiently large n), lnn/n is a monotonically
decreasing function. The limit of lnn/n is zero as n → ∞. Therefore, the series converges.
Consider the series with positive terms now.

∞∑
n=2

lnn

n

lnn/n is monotonically decreasing, so use the integral test to prove or disprove convergence.

f(x) =
lnx

x

lnx and x are continuous functions, so their ratio is as well. In addition, lnx/x is positive from 2
to ∞. The conditions to use the integral test are satisfied; now evaluate the corresponding integral

� ∞

2

lnx

x
dx
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by using the substitution u = lnx (du = dx/x).

� ∞

ln 2
u du

u2

2

∣∣∣∣∞
ln 2

∞

The series of positive terms diverges by the integral test. Therefore, the series in question,

ln 2

2
− ln 3

3
+

ln 4

4
− ln 5

5
+

ln 6

6
− · · · =

∞∑
n=2

(−1)n
lnn

n
,

is not absolutely convergent but rather conditionally convergent.

Part (b)

Rewrite the given series.

1

1
+

1

2
− 1

3
− 1

4
+

1

5
+

1

6
− 1

7
− 1

8
+ · · · =

(
1

1
− 1

3
+

1

5
− 1

7
+ · · ·

)
+

(
1

2
− 1

4
+

1

6
− 1

8
+ · · ·

)

=

∞∑
n=0

(−1)n
1

2n+ 1
+

∞∑
n=0

(−1)n
1

2n+ 2

=

∞∑
n=0

(−1)n
(

1

2n+ 1
+

1

2n+ 2

)

=

∞∑
n=0

(−1)n
4n+ 3

(2n+ 1)(2n+ 2)

To determine whether this alternating series converges, check the two conditions of the Leibniz
criterion.

(i)
d

dn

[
4n+ 3

(2n+ 1)(2n+ 2)

]
= − 2

(2n+ 1)2
− 1

2(n+ 1)2
< 0

(ii) lim
n→∞

4n+ 3

(2n+ 1)(2n+ 2)
= lim

n→∞

4n+ 3

4n2 + 6n+ 2
= lim

n→∞

4
n + 3

n2

4 + 6
n + 2

n2

=
0 + 0

4 + 0 + 0
= 0

Since the first derivative of (4n+ 3)/[(2n+ 1)(2n+ 2)] is negative, (4n+ 3)/[(2n+ 1)(2n+ 2)] is a
monotonically decreasing function. The limit of (4n+ 3)/[(2n+ 1)(2n+ 2)] is zero as n → ∞.
Therefore, the series converges.
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Consider the series with positive terms now.

∞∑
n=0

4n+ 3

(2n+ 1)(2n+ 2)

(4n+ 3)/[(2n+ 1)(2n+ 2)] is monotonically decreasing, so use the integral test to prove or
disprove convergence. Consider the corresponding function of x.

f(x) =
4x+ 3

(2x+ 1)(2x+ 2)

2x+ 1 and 2x+ 2 are continuous functions, so their product is as well. 4x+ 3 is also continuous,
so the ratio of 4x+ 3 to (2x+ 1)(2x+ 2) is also continuous. f(x) is positive from 0 to ∞. The
conditions to use the integral test are satisfied; now evaluate the corresponding integral

� ∞

0

4x+ 3

(2x+ 1)(2x+ 2)
dx

by using partial fraction decomposition.

� ∞

0

(
1

2x+ 1
+

1

2x+ 2

)
dx

ln(2x+ 1)

∣∣∣∣∞
0

+
1

2
ln(x+ 1)

∣∣∣∣∞
0

∞

The series of positive terms diverges by the integral test. Therefore, the series in question,

ln 2

2
− ln 3

3
+

ln 4

4
− ln 5

5
+

ln 6

6
− · · · =

∞∑
n=0

(−1)n
4n+ 3

(2n+ 1)(2n+ 2)
,

is not absolutely convergent but rather conditionally convergent.
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Part (c)

Rewrite the given series.

1− 1

2
− 1

3
+

1

4
+

1

5
+

1

6
− 1

7
− 1

8
− 1

9
− 1

10
+

1

11
· · ·+ 1

15
− 1

16
· · · − 1

21
+ · · ·

=

(
1∑

n=1

1

n

)
−

(
3∑

n=2

1

n

)
+

(
6∑

n=4

1

n

)
−

(
10∑
n=7

1

n

)
+

(
15∑

n=11

1

n

)
− · · ·

Each term of this alternating series has a lower bound and an upper bound.

1

1
≤

1∑
n=1

1

n
≤ 1

1

1

3
+

1

3
≤

3∑
n=2

1

n
≤ 1

2
+

1

2

1

6
+

1

6
+

1

6
≤

6∑
n=4

1

n
≤ 1

4
+

1

4
+

1

4

1

10
+

1

10
+

1

10
+

1

10
≤

10∑
n=7

1

n
≤ 1

7
+

1

7
+

1

7
+

1

7

1

15
+

1

15
+

1

15
+

1

15
+

1

15
≤

15∑
n=11

1

n
≤ 1

11
+

1

11
+

1

11
+

1

11
+

1

11

Calling the kth term of the series sk, generalize the formulas on the left and right sides.

2

k + 1
≤ sk ≤ 2k

k2 − k + 2

2

k + 1
≤ sk ≤ 2

k − 1 + 2
k

<
2

k − 1

To determine whether this alternating series converges, check the two conditions of the Leibniz
criterion.

(i)
d

dk

(
2

k + 1

)
≤ s′k ≤ d

dk

(
2

k − 1

)
→ − 2

(k + 1)2
≤ s′k ≤ − 2

(k − 1)2

(ii) lim
k→∞

2

k + 1
≤ lim

k→∞
sk ≤ lim

k→∞

2

k − 1
→ 0 ≤ lim

k→∞
sk ≤ 0 ⇒ lim

k→∞
sk = 0

Since the first derivative of sk is negative, sk is a monotonically decreasing function. The limit of
sk is zero as k → ∞ by the Squeeze theorem. Therefore, the series converges.
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The series with positive terms,

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10
+

1

11
· · ·+ 1

15
+

1

16
· · ·+ 1

21
+ · · · ,

is the harmonic series, which diverges. Therefore, the series in question,

1− 1

2
− 1

3
+

1

4
+

1

5
+

1

6
− 1

7
− 1

8
− 1

9
− 1

10
+

1

11
· · ·+ 1

15
− 1

16
· · · − 1

21
+ · · · ,

is not absolutely convergent but rather conditionally convergent.
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